3x^2+4xy+5y^2-8=x^2+3xy+2y^2

Simple and best practice solution for 3x^2+4xy+5y^2-8=x^2+3xy+2y^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+4xy+5y^2-8=x^2+3xy+2y^2 equation:


Simplifying
3x2 + 4xy + 5y2 + -8 = x2 + 3xy + 2y2

Reorder the terms:
-8 + 4xy + 3x2 + 5y2 = x2 + 3xy + 2y2

Reorder the terms:
-8 + 4xy + 3x2 + 5y2 = 3xy + x2 + 2y2

Solving
-8 + 4xy + 3x2 + 5y2 = 3xy + x2 + 2y2

Solving for variable 'x'.

Reorder the terms:
-8 + 4xy + -3xy + 3x2 + -1x2 + 5y2 + -2y2 = 3xy + x2 + 2y2 + -3xy + -1x2 + -2y2

Combine like terms: 4xy + -3xy = 1xy
-8 + 1xy + 3x2 + -1x2 + 5y2 + -2y2 = 3xy + x2 + 2y2 + -3xy + -1x2 + -2y2

Combine like terms: 3x2 + -1x2 = 2x2
-8 + 1xy + 2x2 + 5y2 + -2y2 = 3xy + x2 + 2y2 + -3xy + -1x2 + -2y2

Combine like terms: 5y2 + -2y2 = 3y2
-8 + 1xy + 2x2 + 3y2 = 3xy + x2 + 2y2 + -3xy + -1x2 + -2y2

Reorder the terms:
-8 + 1xy + 2x2 + 3y2 = 3xy + -3xy + x2 + -1x2 + 2y2 + -2y2

Combine like terms: 3xy + -3xy = 0
-8 + 1xy + 2x2 + 3y2 = 0 + x2 + -1x2 + 2y2 + -2y2
-8 + 1xy + 2x2 + 3y2 = x2 + -1x2 + 2y2 + -2y2

Combine like terms: x2 + -1x2 = 0
-8 + 1xy + 2x2 + 3y2 = 0 + 2y2 + -2y2
-8 + 1xy + 2x2 + 3y2 = 2y2 + -2y2

Combine like terms: 2y2 + -2y2 = 0
-8 + 1xy + 2x2 + 3y2 = 0

The solution to this equation could not be determined.

See similar equations:

| 5=-12k-3k | | 5x+16=9x-52 | | 50=2x+3x+5 | | n(6)+4=28 | | 7x-9=6x-12 | | -x+2+5x=10 | | -3+10x+7=15+13x-23 | | 71/4/1/5 | | 5(5c)=4(c-2) | | n+6=28 | | 12/5=p/18 | | 7x-6=3x+42 | | 4x+5+2x=-61 | | 5x+16=2-7x | | 1.5y+y=49 | | 8(y-3)=3y-39 | | (x-1).5=5 | | .3x+.6=.1-.2x | | 28+n=4 | | -6-4x=-(4x+6) | | 23=x-4+5 | | -6-4x=(4x+6) | | x+9-4x=-24 | | 28+4=n | | 11-3x=-5x+3 | | 9x+14y+5z=20 | | N/2=10/5 | | 4x+4-8x=2x-3+x | | 3+5(6a-6)=4a-1 | | -a=3-6x-1 | | 3x+4x=24-x | | 5.6=6-0.4 |

Equations solver categories